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Introduction

MHD effect on free convection heat transfer in a C-shaped cavity has been well studied 
over a century. Free convection is a very promising phenomenon now a days and 
associated with a wide range of industrial applications. Also, free convection in 
enclosures is encountered in many engineering systems such as cooling of electronic 
components, heat transfer for electronics packaging applications, ventilation in building 
and fluid movement in solar energy collectors etc. In the recent past, a number of studies 
have been conducted to investigate the flow and heat transfer characteristics in closed 
cavities. Only the relevant ones are cited in this paper.

Researchers have studied the concept from various perspectives. For example, 
Aminossadati et al. (2005) examined the effects of orientation of an inclined enclosure on 
laminar natural convection. Biserani et al. (2007) used Bejan's constructal theory to 
optimize the geometry of H-shaped cavity that intrudes into a solid conducted wall. They 
optimized other cavities namely, C-shaped and T-shaped cavities and found that H-shaped 
is superior in thermal performance. Munshi et al. (2015) numerically investigated a 
numerical study of free convection in a square enclosure with non-uniformly heated 
bottom wall and square shape heated block. Krakov et al. (2005) investigated numerically 
and experimentally effects of a uniform magnetic field on natural convection in a cubic 
enclosure. They found that a set of numerous convective structures exist in the cube. 
Kandaswamy et al. (2008) studied numerically magneto hydrodynamic natural 
convection in a square cavity with partially thermally active side walls. They considered 
nine different combinations of the relative positions of the active portions. Their results 
showed that when the active portions are located at the middle of the side walls, 
maximum rate of heat transfer occurs. Moreover, they found that the average Nusselt 
number decreases with the increase of Hartman number and increases with an increase of 
Grashof number. Mahmud (2004) investigated the magneto hydrodynamic free 
convection and entropy generation for a square enclosure at low Hartman numbers. They 
found that the fluid velocity is reduced with increasing value of the Hartman number. 
Very recently Mohmoodi et al. (2011) investigated numerically magneto hydrodynamic 
free convection in a square cavity with hot left wall, cold top wall and insulated right and 
bottom wall. They found that a clockwise primary eddy is formed inside the cavity 
regardless the Rayleigh number and the Hartman number. Also they found that the 
magnetic field decreases the intensity of free convection and flow velocity.

Nithyadevi et al. (2009) using a numerical simulation investigated effect of time periodic 
boundary conditions on magneto hydrodynamic natural convection in a square cavity 
with partially heated and cooled side walls. They found that the flow and the heat transfer 
rate in the cavity are affected by the sinusoidal temperature profile and by the magnetic 
field at lower values of Grashof number. Moreover, they found that the maximum rate of 
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heat transfer occurs for the active portions located at the middle of the side walls. Oztop 
et al. (2009) investigate numerically the magneto hydrodynamic free convection in non-
isothermally heated square enclosure. They observed that the heat transfer decreases with 
increasing Hartman number and decreasing amplitude of sinusoidal function. Mahmoodi 
(2011) studied free convection in L-shaped cavity filled with Cu-water nanofluid. 
Mahmoodi and Hashemi (2012) studied the C-shaped cavity filled with a nanofluid. Cho 
et al. (2012) investigated the natural convection enhancement of Al2O3-water nanofluid 
in a U-shaped cavity.  Pirmohammadi et al. (2009) studied steady laminar free convection 
flow in presence of a magnetic field in an enclosure heated from left and cooled from 
right. The Hartmann number increases with the increase of streamline. In a numerical 
study Ruddraiah et al. (1995) investigated the effect of a transverse magnetic field on the 
free convection heat transfer and fluid flow in a differentially heated rectangular with 
isothermal side walls and adiabatic horizontal walls. Their results showed that a 
circulating flow is formed with a relatively weak magnetic field. Moreover, they found 
that with increasing the magnetic field the convective heat transfer decreases. Mansour et 
al. (2014) also investigated the natural convection inside U-shaped cavity filled with Cu-
water nanofluid but they termed their cavity as C-shaped. Mojumder et al. (2015) studied 
the natural convection in C-shaped cavity filled with Cobalt-Kerosene ferrofluid under 
the effect of externally applied magnetic field. Wang et al. (2007) reported results of a 
numerical study on magneto hydrodynamic natural convection in a porous media filled 
square cavity. They used the Brinkman-Forchheimer extended Darcy model to solve the 
momentum equations, and the local thermal non-equilibrium (LTNE) models to solve 
energy equations for fluid and solid. They found that both the magnetic force and the 
inclination angle have significant effect on the flow field and heat transfer in porous 
medium.

On the basis of the literature review, it appears that very little work was reported on the 
MHD effect on free convection heat transfer in a C-shaped cavity. Thus, the obtained 
numerical results of the present problem are presented graphically in terms of 
streamlines, isotherms, velocity, dimensionless temperature and local Nusselt number for 
different Rayleigh numbers and Hartmann numbers.

Physical Configuration
The physical models under consideration numerical simulation of MHD effect on free 
convection heat transfer in a C-shaped cavity is shown in Figure 1. The gravity acts in the 
negative y direction. The uniform external magnetic field of constant strength B0 is 
applied in the x direction. The top, left and bottom walls are maintained at heated 
temperature Th. The right internal walls are maintained at cold temperature Tc whereas 
the remaining parts are kept adiabatic. The two-dimensional C-shaped cavity has equal 
length and height of L. The internal walls of cavity with the length H are maintained at a 
relatively low temperature Tc. 
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 Fig. 1: Schematic of C-shaped cavity under magnetic field.

Governing Equations
The governing equations (continuity, momentum and energy equations) for laminar, 
steady state, two-dimensional free convection with a magnetic field in x-direction, are 
expressed as below:

 
 
Where u and v are the velocity components, p is pressure, ρ is the density, µ is the 
dynamic viscosity, β is the thermal expansion coefficient, σ is the electrical conductivity, 
B0 is the magnitude of magnetic field, T is the temperature and α is the thermal diffusivity.

Boundary conditions
The boundary conditions for the present problem are specified as follows:
On walls: ab, bc, cd : u = v = 0, T = Th  
On walls: ef, fg, gh : u = v = 0, T = Tc

On walls: de, ha : u = v = 0,     =0

Using the following dimensionless parameters, the governing equations can be converted 
to the dimensionless forms:

The dimensionless forms of the governing equations are:
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Where Ra, Pr and Ha are the Rayleigh, Prandtl and Harmann numbers and defined as:

 
where v is the kinematic viscosity. The effect of magnetic field into the momentum 
equation is introduced through the Lorentz force term, J x B that is reduced to -σB0v2as 
shown by Mahmoodi and Talea'pour (2011).

Dimensionless boundary conditions
On walls: ab, bc, cd : U = V = 0, θ =1
On walls: ef, fg, gh : U = V = 0, θ =0

On walls: de, ha : U = V = 0,      =0

To computation of the rate of heat transfer, Nusselt number along the hot wall of the 
enclosure is used that is as follows:

The average Nusselt number of the hot wall is obtained as follows:

The dimensionless stream function is defined as, U =      , V = _  

Mesh Generation 
In finite element method, the mesh generation is the technique to subdivide a domain into 
a set of subdomains, called finite elements, control volume etc. The discreate locations 
are defined by the numerical grid, at which the variables are to be calculated. The 
computational domains with irregular geometries by a collection of finite elements make 
the method a valuable practical tool for the solution of boundary value problems arising 
the various fields of engineering. Fig.2 displays the finite element mesh of the present 
physical domain.
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Fig. 2: Mesh generation of the C-shaped cavity

Numerical Technique
The nonlinear governing partial differential equations, i.e., mass, momentum and energy 
equations are transferred into a system of integral equations by using the Galerkin 
weighted residual finite-element method. The nonlinear algebraic equations so obtained 
are modified by imposition of boundary conditions. These modified nonlinear equations 
are transferred into linear algebraic equations with the aid of Newton's method. Lastly, 
Triangular factorization method is applied for solving those linear equations. For 
numerical computation and post processing, the software COMSOL Multiphysics is used. 
Table 1 shows a comparison between the average Nusselt numbers obtained by the 
present code with the results of Pirmohammadi et al. (2009) for different Rayleigh and 
Hartman numbers. As can be observed from the table, very good agreements exist 
between the two results.  
Table 1: Comparison between the average Nusselt numbers of present study and those of 
Pirmohammadi et al. (2009).

Results and Discussion
MHD effects on free convection heat transfer in a C-shaped cavity are investigated 
numerically. The results are gathered by inspecting the effects of Rayleigh number
103 < Ra < 106 and Hartmann number 0 < Ha < 102 on the flow are presented in the 
following subsections.

Effect of Rayleigh number on free convection
Streamlines and isotherms for different values of Rayleigh numbers Ra = 103- 106 while 

_ _ _ _
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Ha = 0 and Pr = 0.71 are presented in Fig. 3 to understand the effect of Rayleigh number 
on flow field and temperature distribution. At Ra = 103 and in the absence of the 
magnetic field (Ha = 0) one circulation cell are formed centre of the cavity shown in Fig. 
3(a). As Ra increases to 104, the effect of free convection increases and the strength of 
both primary and secondary circulation increases. For higher Rayleigh numbers two or 
more circulation cell is formed inside the cavity and also flow strength increases are 
shown in Fig. 3(a). Conduction dominant heat transfer is observed from the isotherms in 
Fig. 3(b). As seen from the figure, isotherms are concentrates near the top and bottom 
walls. For higher Rayleigh number, the isotherms are bending right and bottomwalls 
which means increasing heat transfer through convection. In Fig. 4(a) variation of local 
Nusselt number along the bottom wall for different Rayleigh number with Ha = 0 and Pr 
= 0.71. Maximum and minimum shape curve here and Local Nusselt number increases as 
increasing Rayleigh number. 

Fig. 4(b) shows that variations of the vertical velocity components along the horizontal 
wall for different Rayleigh number with Ha = 0 and Pr = 0.71. As seen from this figure, 
lower value of Rayleigh number has less significant change but higher value of Rayleigh 
number has more significant change. Fig.4(c) represents the dimensionless temperature 
profile along the bottom wall for different Rayleigh numbers with Pr = 0.71 and Ha = 0. 
As seen from the figure, maximum value of temperature decreases with increasing 
Rayleigh number. For lower Rayleigh number, the value of temperature has larger change 
but for higher Rayleigh number the value of temperature has smaller change.

     

    

Fig. 3: (a) Streamlines and (b) isotherms for different values of Rayleigh numbers Ra = 
103- 106 while Ha = 0 and Pr = 0.71.

(a)

(b)
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(a)

Fig. 4: Variation of the (a) Local Nusselt number (b) vertical velocity component and (c) 
the dimensionless Temperature along the horizontal line for different Rayleigh number 
Ra = 103- 106 while Ha = 0 and Pr = 0.71.

Effect of Hartmann number on free convection
The effect of the applied magnetic field is studied by varying Hartmann number (Ha = 0-
102)  at Ra = 105 and Pr = 0.71. The streamlines patterns, which are presented in figure 
5(a). For lower value of Hartmann number, it can be found that strength of the buoyancy 
inside the cavity is significant and more fluid rise from the centre of the cavity. As Ha 
increases, the strength of the buoyancy increases and two or more circulation cells inside 
the cavity. At Rayleigh number Ra = 105 and Ha = 0-102 the isotherms illustrate a pure 
conduction heat transfer. As can be seen from the Figure 5(b) the isotherms line bending 
middle of the C-shaped cavity. While Ha increases isotherms lines are bending near the 
right wall and increasing heat transfer.
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Fig. 5:  (a) Streamlines and (b) Isotherms for different values of Hartmann numbers Ha = 
0- 102 while Ra =105 and Pr = 0.71

Fig. 6: Variation of the (a) Local Nusselt number (b) vertical velocity component and (c) 
dimensionless Temperature along the horizontal line for different Hartmann number Ha =  
0- 102 while Ra = 105 and Pr = 0.71.

Figure 6(a) shows the effect of Local Nusselt number along the horizontal wall for 
different Hartmann number Ha = 0- 102 while Ra = 105 and Pr = 0.71. As seen from this 
figure, minimum and maximum shape curve here. When the value X< 0.5 minimum 
shape curves are found and X > 0.5 maximum shape curves found, also Local Nusselt 
number increasing for higher Hartmann number. Figure 6(b) represents the variations of 
the vertical velocity components along the horizontal wall for different Hartmann number 
with Ra =105 and Pr = 0.71. It can be seen from the figure that the higher Hartmann 
number value of velocity has larger change. Fig. 6(c) shows the effect of dimensionless 
temperature along the bottom wall for different Hartmann numbers with Pr = 0.71 and Ra 
= 105. As can be seen from the Fig. 6(c), increase in Hartmann number motivates the 
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value of temperature decreases. Also dimensionless temperature decreases clearly 
depends on the value of Hartmann number. It is found that free convection heat transfer 
decrease with increases in temperature via increasing the Hartmann number. Therefore, at 
high Hartmann numbers, a relatively stronger magnetic field needed to decrease the rate 
of heat transfer. Variation of average Nusselt number versus Rayleigh number for 
different values of Hartmann number are shown in Fig. 7. It is also evident from this 
figure that, the lower value of Hartmann number average Nusselt number has more 
significant change but higher value of Hartmann number has less significant change. A 
variation of Nuav between lowest value and upper value of considering parameters is 
presented here. In case of Rayleigh number, average Nusselt number increases 356.57% 
when Ha = 0 and Pr = 0.71. Again the case of Hartmann number, average Nusselt 
number decreases 24.01% when Ra = 106 and Pr = 0.71.

 

Fig. 7: Variation of average Nusselt number versus Rayleigh number for different values 
of Hartmann number along the bottom wall, while Pr = 0.71.  

Table 2: Average Nusselt number table for different values of Hartmann number and 
Rayleigh number.
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Conclusion 
The current investigation addresses MHD free convection in a C-shaped cavity. The 
variations of relevant parameters in the present study are Hartmann number, Rayleigh 
number and Prandtl number. The effects of variation of the mentioned parameters were 
used on the distribution in terms of streamlines, isotherms, velocity and temperature. 
Good distributions were shown for different Rayleigh numbers at different Hartmann 
numbers. For all cases considered, two or more counter rotating eddies were formed 
inside the cavity regardless the Rayleigh and the Hartmann numbers. The obtained results 
showed the heat transfer mechanisms, temperature distribution and the flow 
characteristics for different Rayleigh number. Therefore, we conclude that a strong MHD 
is needed to compare the lower Rayleigh number with increase the buoyancy force. 
Moreover the significant suppression of the convection current in the cavity is due to 
increase of Hartmann number. Better heat transfer rate is achieved for Ra = 106 which 
results the exported convective heat transfer inside the C-shaped cavity. 
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